Let F=(f,h):D1,1→Dn,m be a holomorphic mapping and holomorphic at p∈∂D1,1 with F(p)=q∈∂Dn,m. Then we have the result as follows:
There exists λ∈R such that JF(p)TqT=λpT with λ≥∣1−h1(0)∣2/(1−∣h1(0)∣2)>0. Notice that pT and qT are the normal vectors to the boundary of D1,1 at p and Dn,m at q, respectively.
JF(p) can be regarded as a linear operator from Tp1,0(∂D1,1) to TF(p)1,0(∂Dn,m). Moreover, we have ∥JF(p)∥op≤λ *where ∥⋅∥op means the usual operator norm.
If Dn,m(μ) and Dn′,m′(μ′) are two equidimensional Fock-Bargmann-Hartogs domains with m≥2 and f is a proper holomorphic mapping of Dn,m(μ) into Dn′,m′(μ′), then f is a biholomorphism between Dn,m(μ) and Dn′,m′(μ′).
Suppose Dn0n,p(μ) and Dm0m,q(ν) are two equidimensional generalized Fock-Bargmann-Hartogs domains with
min{n1+ϵ,n2,…,nℓ,n1+⋯+nℓ}≥2
min{m1+δ,m2,…,mℓ,m1+⋯+mℓ}≥2
Then any proper holomorphic mapping between Dn0n,p(μ) and Dm0m,q(ν) must be a biholomorphism; any proper holomorphic self-mapping of Dn0n,p(μ) must be an automorphism.
For 1≤p<∞ and 1≤k<n, the Bergman projection PH{kj,ϕj}n for H{kj,ϕj}n is bounded on Lp(H{kj,ϕj}n) if and only if p is in the range (n+12n,n−12n).
Let TK−t be the Toeplitz operator with the symbol K−t(z,z),t≥0. Let 1<p≤q<∞ and Cb,k=k(b−1).
(1) If q∈[n−1+Cb,k2n+2Cb,k,∞), then the Toeplitz operator TK−t does not map Lp(H{kj,ϕj,b}n) into Lq(H{kj,ϕj,b}n) for any t≥0
(2) If q∈(n+1+Cb,k−2/p2(n−1)+2Cb,k,n−1+Cb,k2n+2Cb,k), then the Toeplitz operator TK−t continuously maps Lp(H{kj,ϕj,b}n) into Lq(H{kj,ϕj,b}n) if and only if t≥p1−q1
(3) If q∈[p,n+1+Cb,k−2/p2(n−1)+2Cb,k], then the Toeplitz operator TK−t continuously mapsLp(H{kj,ϕj,b}n) into Lq(H{kj,ϕj,b}n) if and only if t>2p1+2p(1−p)n−1+Cb,kn+1+Cb,k
(重要文献) Bi, E., Su, G. & Tu, Z. The Kobayashi Pseudometric for the Fock-Bargmann-Hartogs Domain and Its Application. J Geom Anal 30, 86–106 (2020).
(重要文献) Bi E , Tu Z . Rigidity of proper holomorphic mappings between generalized Fock–Bargmann–Hartogs domains[J]. Pacific Journal of Mathematics, 2018, 297(2):277-297.
Tu Z , Wang L . Rigidity of proper holomorphic mappings between certain unbounded non-hyperbolic domains[J]. Journal of Mathematical Analysis and Applications, 2014, 419(2):703-714.
Yamamori A . The Bergman kernel of the Fock–Bargmann–Hartogs domain and the polylogarithm function[J]. Complex Variables, Theory and Application: An International Journal, 2013, 58(6):783-793.
(重要文献) Tang, Y., Tu, Z. Special Toeplitz operators on a class of bounded Hartogs domains. Arch. Math. (2019).
Chen, Liwei. The Lp boundedness of the Bergman projection for a class of bounded Hartogs domains[J]. Journal of Mathematical Analysis and Applications, 2017, 448(1):598-610.
Vu K T , Jiakun L , Trong T P . Bergman–Toeplitz operators on weakly pseudoconvex domains[J]. Mathematische Zeitschrift, 2018.
计划研读文献4篇:
[ ] He L , Tang Y , Tu Z . Lp regularity of weighted Bergman projection on Fock-Bargmann-Hartogs domain[J]. 2019.
[ ] Tu Z , Wang L . Rigidity of proper holomorphic mappings between equidimensional Hua domains[J]. Mathematische Annalen, 2015, 363(1-2):1-34.
[ ] Blocki Z . The Bergman Metric and the Pluricomplex Green Function[J]. Transactions of the American Mathematical Society, 2005, 357(7):2613-2625.
[ ] Khanh T V , Liu J , Thuc P T . Bergman–Toeplitz operators on fat Hartogs triangles[J]. Proceedings of the American Mathematical Society, 2019, 147.
Let F=(f,h):D11,1→Dn0n,p be a holomorphic mapping and holomorphic at p∈∂D11,1 with F(p)=q∈∂Dn0n,p. There exists λ∈R such that JF(p)TqT=λpT with λ≥∣1−h1(0)∣2/(1−∣h1(0)∣2)>0.